

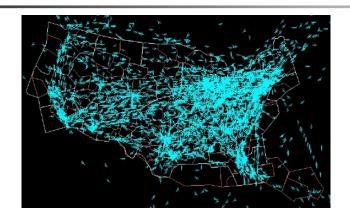
Information fusion for real-time national air transportation system prognostics under uncertainty

PI: Yongming Liu

Co-Is: Aditi Chattopadhyay, Nancy Cooke, Jingrui He, Mary Niemczyk, Pingbo Tang, Lei Ying Arizona State University

> Co-I: Sankaran Mahadevan Vanderbilt University

Co-I: PK Menon
Optimal Synthesis Inc.

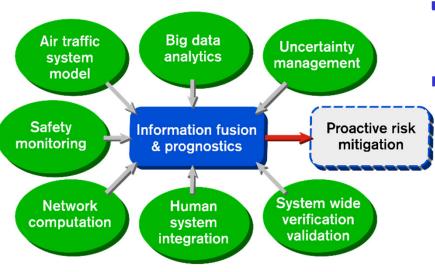

Co-I: Barron Bichon
Southwest Research Institute

University Leadership Initiative Technical Interchange, June 25, 2018

Outline

- Background and objectives
- Statement of work
 Technical progress and achievements
 Educational activities and achievements
- Project management
 Project team
 Research dissemination and broad impact
 External advisory board
- Conclusions and future work

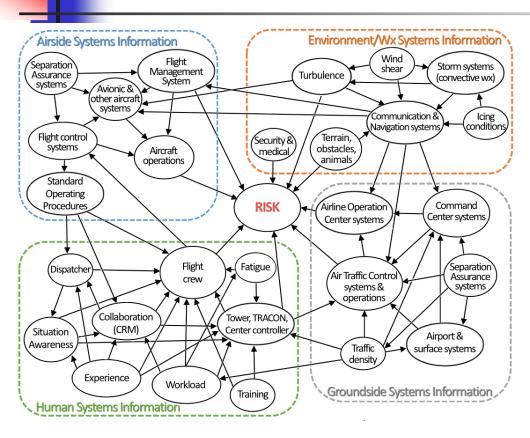
Background



- NASA Aeronautics Research Mission Directorate (ARMD) vision for aeronautical research that encompasses a broad range of technologies to meet future needs of the aviation community
- Recent technology advances in sensors, networking, data mining, prognostics, and other analytic techniques enable proactive risk management for National Airspace System (NextGen)
- Technology convergence of multidisciplinary research to develop transformative concepts and to enable a safe and efficient aviation system
- Systematic training of next generation engineers and workforce pipeline for future aerospace industries and research

Objectives

- Real-time system-wide information fusion methodology for prognostics and safety assurance of the NAS
- Self-identified technical challenges (TC) and objectives
 - TC 1: Develop an extensible community-based NAS air traffic simulation system incorporating dataderived vehicle/subsystem level failure/fault models that can be used for system-wide safety assessment and integration with training simulations
 - o **TC 2:** Determine information sources inventory associated with current ATM operations, model human ATM performance in simulator, and develop real-time sensors of human performance
 - TC 3: Determine faults and early damage indicators in the subsystems during ground and in-air fleetwide operations utilizing state of the art multiscale, multimodal sensors, data mining, feature extraction and classification
 - TC 4: Uncertainty quantification, verification and validation, and risk assessment tools for 80% increase in computational speed and 60% increase in confidence in risk assessment compared with existing approaches
 - TC 5: Integrated diagnostics, prognostics, probabilistic modeling, and simulation tools for 50% increase in accuracy compared with existing approaches


Proposed methodology and tasks

Schematic illustration of the proposed major research themes

- Highly multidisciplinary research themes are integrated together
- Seven major tasks:
 - Task 1. System-wide air traffic modeling and failure simulation
 - Task 2. Multi-modality safety monitoring, detection and data analysis
 - · Task 3. Human system integration
 - Task 4. Uncertainty management and risk assessment
 - Task 5. Information fusion and prognostics
 - Task 6. Verification, validation, and safety assurance
 - Task 7. Integrated education, research, and demonstration

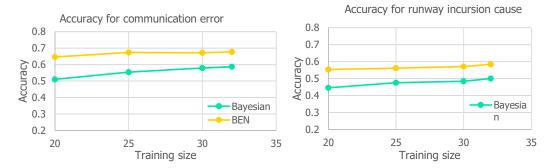
Information fusion – Bayesian Entropy Network (BEN) framework

- Integrate multiple types of information among multiple domains within the airspace system
- Bayesian Entropy Network (BEN) based information fusion for Data, Experiences and Knowledge (DEK)

$$p(\theta) \propto \mu(\theta) \cdot \mu(x' \mid \theta) \cdot e^{\beta \cdot g(\theta)}$$

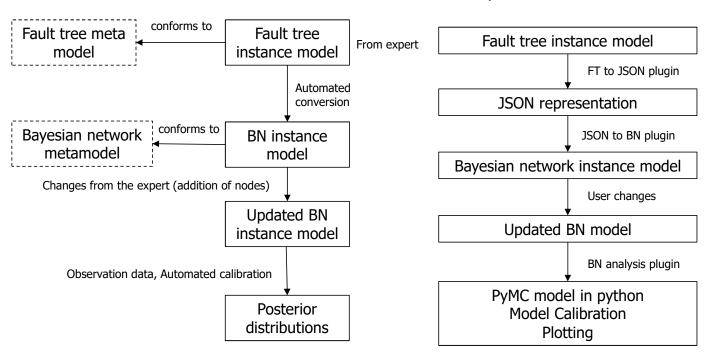
Entropy term for abstracted knowledge, physical constraints, and expert opinions

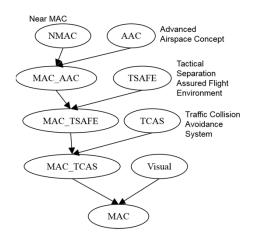
- Hybrid data-based and physics-based prognostics
- Assist the risk assessment and decision-making for safety assurance



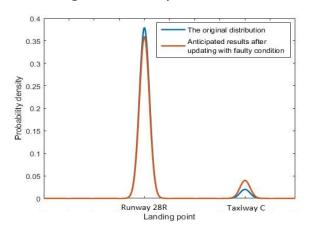
- Adding entropy information:
 - Expert linguistic information representing historical experiences
- When the taxi clearance communication error is on the ATC side, the cause for runway incursion is more likely to be cross runway without clearance.
- LUAW communication error can only lead to and is the only reason for attempt take-off without clearance

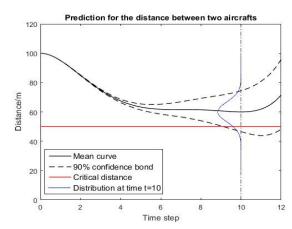
....

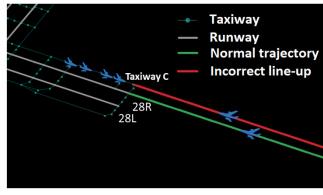

 Expressed as constraints on expected value of the posterior distribution

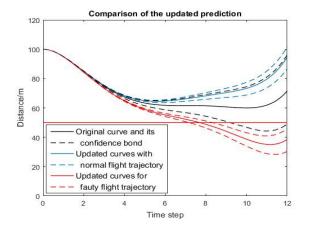

Information fusion – avoid mid-air collision

- Fuse machine learning models plus expert knowledge (fault trees)
- Convert existing system fault trees to Bayesian networks, instead of building from scratch
- Automate the conversion from fault tree to Bayesian network


Nannapaneni & Mahadevan, AIAA Aviation 2018


Aircraft selfseparation example

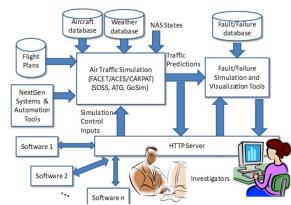



Information fusion – prognostics and safety metrics

- Simulating accidents for landing on taxiway using NATS
- Update the trajectory using ADS-B information and BEN
 - Predict the landing point at the airport and confidence level
 - Prognostics for potential collision of any pair near terminal region

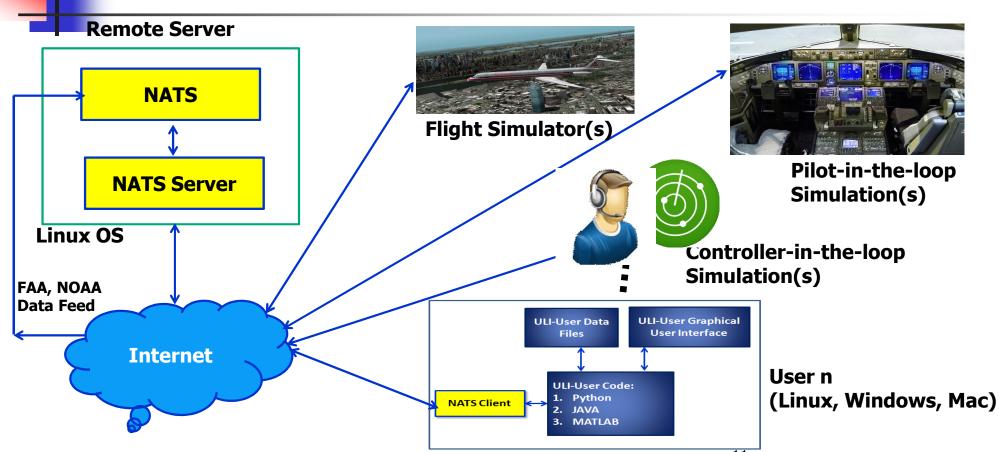
Air traffic simulation – NATS

- Community-based software for formulating and analyzing NAS safety prognostics problems under realistic NAS traffic environments.
 - <u>National Airspace Traffic Safety-Analysis</u> (*NATS*) Server-Client Software released (Python, MATLAB, Java interfaces)

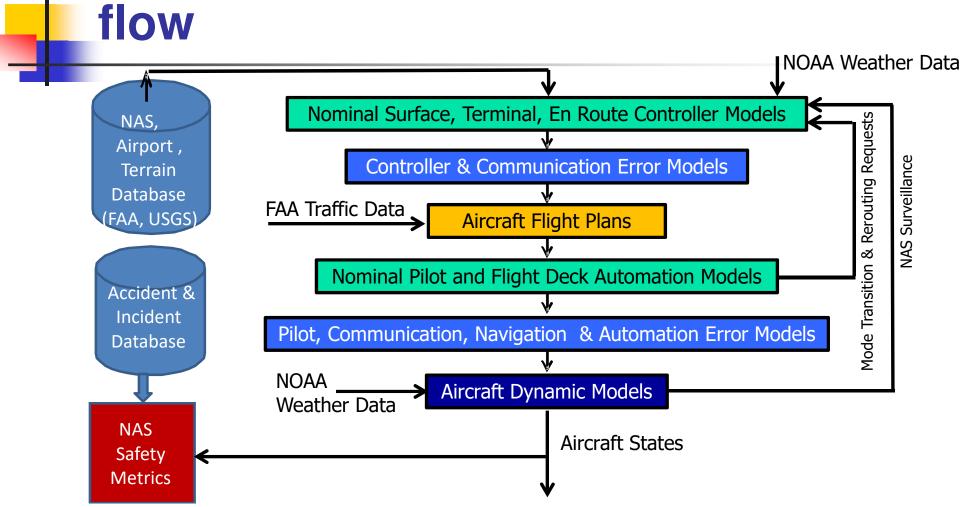

55 Airports in the NAS with all the gates, taxiways, runways, approach, go-around, and

departure procedures

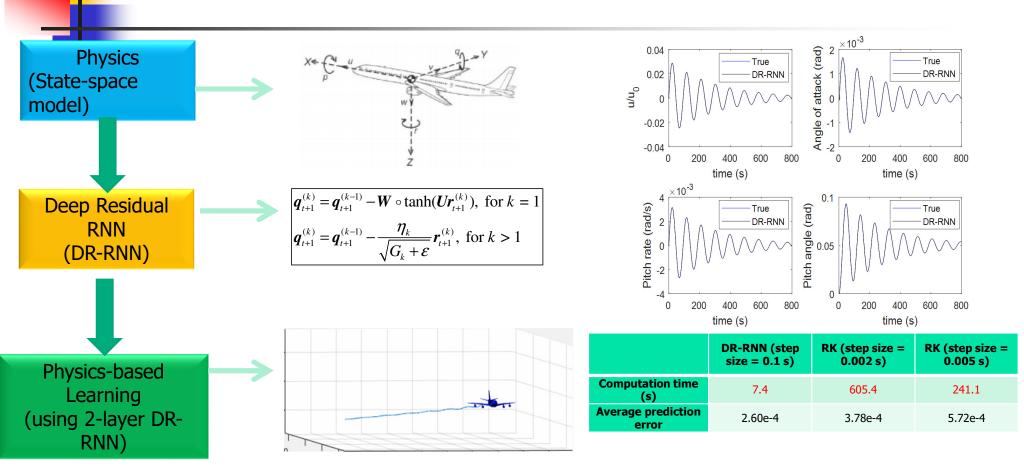
Terrain Profile for the Contiguous United States

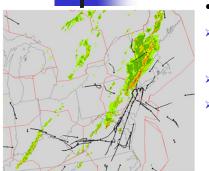

NOAA wind and convective weather

- Multiple application examples and software demos
- Interface with any user-defined real-time simulation
- Human Pilot/Controller error models
- 2018 PHM Conference paper summarizing the software status



Schematic Illustration of NAS Air Traffic Prediction and fault/Failure Simulation

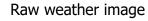

Air traffic simulation – real-time cloud-based computing

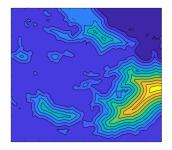

Air traffic simulation – information flow

Air traffic simulation – hybrid learning for aircraft dynamics

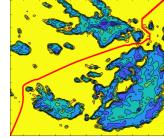
Air traffic simulation – automatic weather avoidance

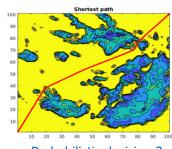
• Objectives:


- > Develop an automated trajectory prediction algorithm for arbitrary weather cell shapes at the pixel level
- Include weather dynamics and forecasting uncertainties for planning

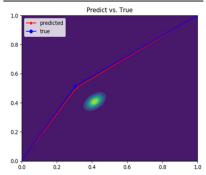

Combine simple geometric models and CNN-based learning to understand

the decision making of pilot and controller





Fast Marching Map

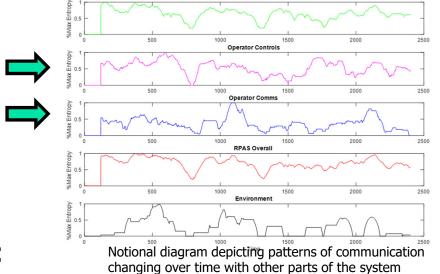


Probabilistic decision 1



Probabilistic decision 2

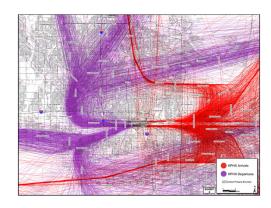
Network Configuration					
Layer number	Layer Type				
1	3x3-Conv-32				
2	3x3-Conv-32				
3	2x2-maxpool				
4	3x3-conv-64				
5	3x3-conv-64				
6	2x2-maxpool				
7	3x3-conv-128				
8	3x3-conv-128				
9	2x2-maxpool				
10	512-fc				
11	64-fc				
12	2-sigmoid				

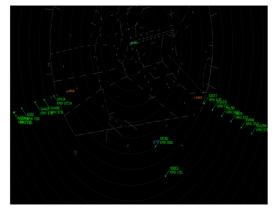


Human system integration— human factors and operational error

Human system integration – hypotheses for testing

- Communications data can serve as a sensor for the human part of the NAS
- Changes in the ATC-pilot state may correspond to changes in communication patterns which can signal potential operational errors/risk


We are addressing this hypothesis through:


- Literature Review
- Existing ATC voice comms
- SWIM data
- Simulation (in which we can push the boundaries of ATC performance)

Human system integration – design of ATC experiment

- 12 Experienced (retired) and inexperienced (students) ATCs
- Up to 4 pseudo pilots (students) each controlling 4-8 planes
- Simulated approach scenarios
- Baseline normal conditions and increasing traffic density
 - Traffic density 4-32 planes per sector
 - Complicating events
 - Separation issues
 - Loss of engine
 - Pilot miscommunication
 - Measures
- ATC Operational Error breach of separation limits
- Measures
 - Voice Communication (patterns over time detect change)
 - Volume how much communication over time
 - Flow who talks to whom patterns
 - Voice pitch, volume changes over time
 - Facial Expression cameras and affective software labeling
 - Eye blink rate (Pingbo Tang)
 - Keystrokes/Data comm

Human system integration – VORATS

- Voice Recognition for Air Traffic Simulators (VORATS)
- Simulator independent
- Automatic recording and translating, self-triggering
- IoT with distributed computation
- Easily expandable (N x Pi)
- Automatic recognize the people (with Pi ID)
- Data with time stamp for integration
- Fulton Undergraduate Research Initiative (FURI) project (pending)
- Integrated research and student education

Data analytics – text mining for safety reports

Problem Definition: Using 2246 accident Reports from NTSB (Part 121) to accomplish two tasks:

- 1. Task 1: Classify the states in which the accident happened
- 2. Task 2: Classify the actual causes which led to the accident

Experiment Process:

4 machine learning algorithms: Linear SVM, Non-linear SVM, Multinomial Naïve Bayes (MNB), Gradient Boosting Decision Tree (GBDT).

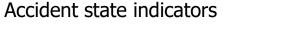
Conclusion: Linear SVM and GBDT are the optimal models for our tasks, in terms of the tradeoff among accuracy, efficiency, and explanation capabilities.

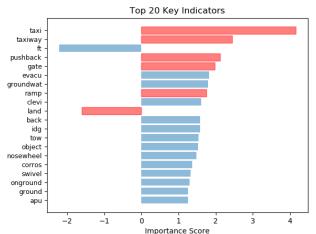
Task 1: Classify the states in which the accident happened

	C-	0.01	C-	: 0.1		=1		: 10		100	C-	1000
	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std
	0.552	0.014	0.783	0.012	0.989	0.002	1.000	0	1.000	0	1.000	0
raining accuracy alidation accuracy	0.332	0.014	0.783	0.012	0.989	0.002	0,607	0.024	0.598	0.023	0.599	0.02
esting accuracy	0.490	0.027	0.273	0.033	0.032	0.057	0.450	0.024	0.398	0.046	0.399	0.02
		1able 2. (ation acc	,	ing non-l	C =		SK I	106	C =	107
	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std
raining accuracy	0.244	0.020	0.635	0.013	0.993	0.002	1.000	0	1.000	0	1.000	0
alidation accuracy	0.212	0.038	0.517	0.023	0.623	0.027	0.620	0.024	0.620	0.024	0.620	0.02
esting accuracy	0.186	0.101	0.273	0.000	0.432	0.055	0.436	0.055	0.436	0.055	0.436	0.05
	0.186	3. Class	sification	accurac	y using N	Multinom	ial Naïve	Bayes i	n Task 1		: 10	0.05
	0.186	3. Class	sification 0.001 std	accurac α = mean	y using N	Multinom α = mean	ial Naïve	Bayes i	n Task 1 = 1 std	α =	= 10 std	0.05
Training accuracy	Table	α = 0 mean 0.921	sification 0.001 std 0.006	α = mean 0.895	0.01 std 0.005	α = mean 0.769	ial Naïve	Bayes i	n Task 1 = 1 std 0.016	α = mean 0.423	10 std 0.035	0.05
Training acc Validation a	Table	α = 0 mean 0.921 0.501	sification 0.001 std 0.006 0.028	α = mean 0.895 0.515	y using N 0.01 std 0.005 0.036	Multinom α = mean 0.769 0.501	0.1 std 0.102 0.035	α: mean 0.546 0.452	n Task 1 = 1 std 0.016 0.029	α = mean 0.423 0.365	std 0.035 0.045	0.05
Training accuracy	Table	α = 0 mean 0.921	o.001 std	α = mean 0.895	0.01 std 0.005	α = mean 0.769	ial Naïve	Bayes i	n Task 1 = 1 std 0.016	α = mean 0.423	10 std 0.035	0.05
Training acc Validation a	Table	$\alpha = 0$ mean 0.921 0.501 0.227	std 0.006 0.028 0.020 e 4. Class	$\begin{array}{c c} \alpha = \\ \hline mean \\ \hline 0.895 \\ \hline 0.515 \\ \hline 0.245 \\ \end{array}$	y using N 0.01 std 0.005 0.036 0.030	Multinom $\alpha = \frac{\alpha}{\text{mean}}$ 0.769 0.501 0.223	0.1 std 0.102 0.035 0.014	Bayes i mean 0.546 0.452 0.277	n Task 1 = 1 std 0.016 0.029 0.014	α = mean 0.423 0.365 0.277	std 0.035 0.045 0.014	0.05
Training acc Validation a	Table	$\alpha = 0$ mean 0.921 0.501 0.227 Tabl	sification std 0.006 0.028 0.020 e 4. Class 0.001	accuracy $\alpha = \frac{\alpha}{\text{mean}}$ 0.895 0.515 0.245	y using N 0.01 std 0.005 0.036 0.030 n accurace	Multinom $\alpha = \frac{\alpha}{\text{mean}}$ 0.769 0.501 0.223 ey using	0.1 std 0.102 0.035 0.014 GBDT in	Bayes i α: mean 0.546 0.452 0.277 Task 1	n Task 1 = 1 std 0.016 0.029 0.014	$\alpha = \frac{\alpha}{\text{mean}}$ 0.423 0.365 0.277	: 10 std 0.035 0.045 0.014	0.05
Training acc Validation a	Table uracy ccuracy racy	$\alpha = 0$ mean 0.921 0.501 0.227 Tabl	0.001 std 0.006 0.028 0.020 e 4. Class 0.001 std	accuracy $\alpha = \frac{\alpha}{\text{mean}}$ 0.895 0.515 0.245 sification $\eta = 0$ mean	y using N 0.01 std 0.005 0.036 0.030 n accurace	Multinom $\alpha = \frac{\alpha}{\text{mean}}$ 0.769 0.501 0.223 ey using $\eta = \frac{\alpha}{\text{mean}}$	0.1 std 0.102 0.035 0.014 GBDT in std	Bayes i πean 0.546 0.452 0.277 Task 1 η = mean	n Task 1 = 1 std 0.016 0.029 0.014 0.1 std	$\alpha = \frac{\alpha}{\text{mean}}$ 0.423 0.365 0.277	= 10 std 0.035 0.045 0.014 = 1 std	0.05
Training accuracy Training accuracy Training accuracy Training accuracy	Table uracy ccuracy racy uracy	$\alpha = 0$ mean 0.921 0.501 0.227 Tabl $\eta = 0$ mean 0.499	0.001 std 0.006 0.028 0.020 e 4. Class 0.001 std 0.028 0.020	accuracy $\alpha = mean$ 0.895 0.515 0.245 ssification $\eta = 0$ $mean$ 0.710	y using N 0.01 std 0.005 0.036 0.030 n accurace 0.001 std 0.010	Multinom $\begin{array}{c c} \alpha = \\ \text{mean} \\ 0.769 \\ 0.501 \\ 0.223 \\ \text{cy using } \\ \eta = \\ \text{mean} \\ 0.819 \\ \end{array}$	0.1 std 0.102 0.035 0.014 GBDT in std 0.000 std 0.000	Bayes i mean 0.546 0.452 0.277 Task 1 η = mean 1.000	n Task 1 = 1 std 0.016 0.029 0.014 0.1 std 0.001	α = mean 0.423 0.365 0.277 η: mean 1.000	= 10 std 0.035 0.045 0.014 = 1 std 0.001	0.03
Training acc Validation a	Table uracy ccuracy racy uracy ccuracy	$\alpha = 0$ mean 0.921 0.501 0.227 Tabl	0.001 std 0.006 0.028 0.020 e 4. Class 0.001 std	accuracy $\alpha = \frac{\alpha}{\text{mean}}$ 0.895 0.515 0.245 sification $\eta = 0$ mean	y using N 0.01 std 0.005 0.036 0.030 n accurace	Multinom $\alpha = \frac{\alpha}{\text{mean}}$ 0.769 0.501 0.223 ey using $\eta = \frac{\alpha}{\text{mean}}$	0.1 std 0.102 0.035 0.014 GBDT in std	Bayes i πean 0.546 0.452 0.277 Task 1 η = mean	n Task 1 = 1 std 0.016 0.029 0.014 0.1 std	$\alpha = \frac{\alpha}{\text{mean}}$ 0.423 0.365 0.277	= 10 std 0.035 0.045 0.014 = 1 std	0.0:

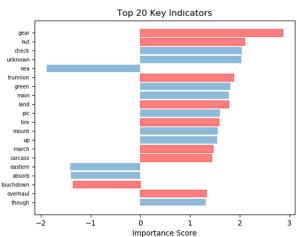
Task 2: Classify the actual causes which led to the accident

		Table 5.	Classifi	cation ac	curacy u	sing line	ar SVM i	in Task 2	2			
	C =	0.01	C:	= 0.1	C	= 1	C:	= 10	C =	: 100	C =	1000
	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std
Aircraft issues	0.427	0.058	0.450	0.065	0.681	0.049	0.708	0.039	0.708	0.035	0.706	0.034
Personnel issues	0.190	0.151	0.291	0.091	0.412	0.112	0.451	0.130	0.456	0.131	0.451	0.126
Environmental issues	0.326	0.092	0.563	0.115	0.581	0.118	0.558	0.090	0.544	0.090	0.544	0.090
		10 ²		tion accu		ng non-li		M in Tas		: 10 ⁶	C =	107
	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std
Aircraft issues	0.429	0.059	0.514	0.052	0.707	0.038	0.704	0.035	0.704	0.035	0.704	0.035
Personnel issues	0.085	0.037	0.337	0.086	0.456	0.119	0.456	0.119	0.456	0.119	0.456	0.119
	0.324	0.092	0.579	0.118	0.546	0.099	0.546	0.088	0.546	0.088	0.546	
	0.324	0.092 7. Classi	0.579	0.118 accuracy	0.546 using M	0.099	0.546 al Naïve	0.088 Bayes in	0.546 Task 2	0.088	0.546	
	0.324	0.092	0.579	0.118	0.546 using M	0.099	0.546 al Naïve	0.088	0.546 Task 2		0.546	
	Table 7	0.092 7. Classi $\alpha = 0$	0.579 fication a	0.118 accuracy	0.546 using M	0.099 ultinomia $\alpha =$	0.546 al Naïve	0.088 Bayes in	0.546 Task 2	0.088 α =	0.546	
Environmental issues	Table	0.092 7. Classi $\alpha = 0$ mean	0.579 fication a	0.118 accuracy α = mean	0.546 using M 0.01 std	0.099 ultinomia $\alpha = $ mean	0.546 al Naïve 0.1 std	Bayes in $\alpha = \frac{\alpha}{mean}$	0.546 Task 2	0.088 α = mean	0.546	
Environmental issues Aircraft issues	Table Table	0.092 7. Classi α = 0 mean 0.596	0.579 fication a 0.001 std 0.057	0.118 accuracy α = mean 0.605	0.546 using M 0.01 std 0.044	0.099 ultinomia $\alpha = $ mean 0.502	0.546 al Naïve 0.1 std 0.063	0.088 Bayes in α = mean 0.439	0.546 Task 2 1 std 0.053	α = mean 0.443	0.546 10 std 0.051	
Aircraft issues Personnel issu	Table Table	$\alpha = 0$ mean 0.596 0.397 0.536	0.579 fication a 0.001 std 0.057 0.083 0.107	$\begin{array}{c} 0.118 \\ \alpha = \\ \text{mean} \\ 0.605 \\ 0.417 \\ 0.526 \\ \end{array}$	0.546 using M 0.01 std 0.044 0.098 0.116	$\begin{array}{c} 0.099 \\ \hline \text{ultinomia} \\ \hline \alpha = \\ \hline \text{mean} \\ \hline 0.502 \\ \hline 0.417 \\ \hline 0.524 \\ \hline \end{array}$ y using G	0.546 al Naïve 0.1 std 0.063 0.053 0.101 BDT in	$\alpha = \frac{\alpha}{\text{mean}}$ 0.439 0.312 0.365	0.546 Task 2 1 std 0.053 0.070 0.085	α = mean 0.443 0.225 0.326	0.546 10 std 0.051 0.152 0.091	
Aircraft issues Personnel issu	Table Table	0.092 7. Classi $\alpha = 0$ mean 0.596 0.397 0.536 Table	0.579 fication a 0.001 std 0.057 0.083 0.107 8. Class	$\alpha = \frac{\alpha}{\text{mean}}$ 0.605 0.417 0.526 sification $\eta = \frac{\alpha}{\alpha}$	0.546 using M 0.01 std 0.044 0.098 0.116 accurace	$\alpha = \frac{\alpha}{\text{mean}}$ 0.502 0.417 0.524 y using G	0.546 al Naïve 0.1 std 0.063 0.053 0.101 BDT in	0.088 Bayes in α = mean 0.439 0.312 0.365 Task 2	0.546 Task 2 = 1 std 0.053 0.070 0.085	α = mean 0.443 0.225 0.326	10 std 0.051 0.152 0.091	
Aircraft issues Personnel issu Environmental	Table Table Ses	$\alpha = 0$ mean 0.596 0.397 0.536 Table $\eta = 0$ mean	0.579 fication a 0.001 std 0.057 0.083 0.107 8. Class 0.001 std	$\alpha = \frac{\alpha}{\text{mean}}$ 0.605 0.417 0.526 iffication $\eta = \frac{\eta}{\text{mean}}$	0.546 using M 0.01 std 0.044 0.098 0.116 accurace	ultinomia $\alpha = mean$ 0.502 0.417 0.524 v using G $\eta = mean$	0.546 al Naïve 0.1 std 0.063 0.053 0.101 BDT in 0.1 std	0.088 Bayes in \[\alpha = \frac{\pi}{\text{mean}} \] 0.439 0.312 0.365 Task 2	0.546 Task 2 = 1 std 0.053 0.070 0.085	α = mean 0.443 0.225 0.326 η = mean	10 std 0.051 0.152 0.091	0.083
Aircraft issues Personnel issu Environmental	Table Table Ses	$\alpha = 0$ mean 0.596 0.397 0.536 Table $\eta = 0$ mean 0.316	0.579 fication a 0.001 std 0.057 0.083 0.107 8. Class 0.001 std 0.162	$\alpha = \frac{\alpha}{\text{mean}}$ 0.605 0.417 0.526 diffication $\eta = \frac{\eta}{\text{mean}}$ 0.527	0.546 using M 0.01 std 0.098 0.116 accuracy 0.01 std 0.029	$\alpha = \frac{\alpha}{\text{mean}}$ 0.502 0.417 0.524 y using G $\eta = \frac{\eta}{\text{mean}}$ 0.648	0.546 al Naïve 0.1 std 0.063 0.053 0.101 BBDT in 0.1 std 0.046	0.088 Bayes in α = mean 0.439 0.312 0.365 Task 2 πean 0.583	1 Task 2 1 Task 2 1 std 0.053 0.070 0.085 1 std 0.049	α = mean 0.443 0.225 0.326 η = mean 0.000	10 std 0.051 0.152 0.091 10 std 0.000	
Environmental issues Aircraft issues Personnel issue Environmental	Table Table es	$\alpha = 0$ mean 0.596 0.397 0.536 Table $\eta = 0$ mean	0.579 fication a 0.001 std 0.057 0.083 0.107 8. Class 0.001 std	$\alpha = \frac{\alpha}{\text{mean}}$ 0.605 0.417 0.526 iffication $\eta = \frac{\eta}{\text{mean}}$	0.546 using M 0.01 std 0.044 0.098 0.116 accurace	ultinomia $\alpha = mean$ 0.502 0.417 0.524 v using G $\eta = mean$	0.546 al Naïve 0.1 std 0.063 0.053 0.101 BDT in 0.1 std	0.088 Bayes in \[\alpha = \frac{\pi}{\text{mean}} \] 0.439 0.312 0.365 Task 2	0.546 Task 2 = 1 std 0.053 0.070 0.085	α = mean 0.443 0.225 0.326 η = mean	10 std 0.051 0.152 0.091	


	Validation Accuracy	Training Efficiency	Explanation
Linear SVM	0.632	Efficient	Easy
Non-linear SVM	0.623	Efficient	Hard
MNB	0.515	Efficient	Hard
GBDT	0.659	Time-consuming	Easy

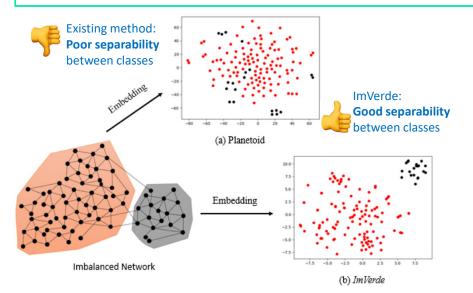


Classification Accuracy



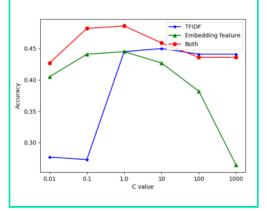
- **Task 1:** The indicators whose bars are marked red are <u>taxi</u>, <u>taxiway</u>, <u>pushback</u>, <u>gate</u>, <u>ramp</u> and <u>land</u>, which are intuitively relevant to our classification task.
- Task 2 (aircraft issue as an example): Similarly, the keywords with red bars are relevant words to this issue. Examples include *gear*, *nut*, *trunnion*, *land*, *tire*, *march*, *carcass*, *touchdown* and *overhaul*, which are intuitively relevant key indicators to identify Aircraft issues for accident reports.

Aircraft issue indicators



Conclusion: Our machine learning models match our intuition by using highly relevant features instead of using the metadata from the reports in the database.

Data analytics – imbalanced data of NAS safety reports


A Novel Model for Learning Representations from Imbalanced Data

- A novel random walk model named Vertex-Diminished Random Walk
- It encourages the random particle to walk within the same class, leading to more accurate node-context pairs
- Semi-supervised method for learning representations from both label information and graph structure

Prelim	inary Results	on NTSB [Data Set
	Methods	Recall@k	•
	DEEPWALK	0.500	
	Node2vec	0.467	
	GraRep	0.516	
	Planetoid	0.472	
	<i>ImVerde-</i> r	0.522	
	<i>ImVerde-</i> e	0.500	
	<i>ImVerde</i> -a	0.538	
			•

Furthermore, we compared the new embedding features with the original TF-IDF features. As shown below, the concatenation of embedding and TF-IDF features improves the classification performance with linear SVM. And a smaller parameter \mathcal{C} is preferred for the embedding features compared to TF-IDF features alone.

Data analytics – hybrid model

Text Data

Text Preprocessing

Word

vectorization

Structural data

Contextual features

TF-IDF matrix

Anomaly of aircraft

Airspace violation

Malfunction type

Primary problem

Location of event

Persons involved

Contributing factors

equipment

Event

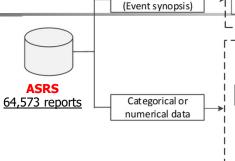
Tokenization

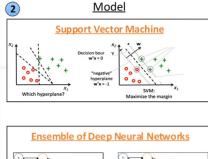
Conditions

Flight phase

Weather visibility

Flight conditions

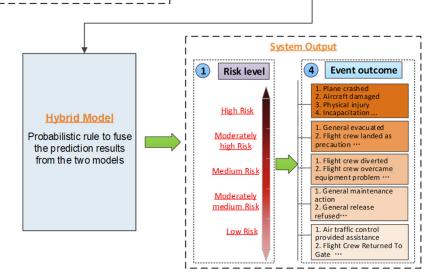

Aircraft information (model,


crew size, flight plan)

assembling

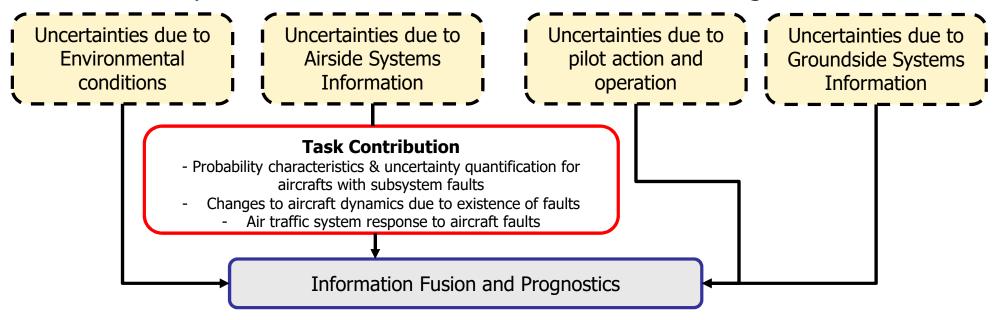
- Aviation Safety Reporting System (ASRS)
- 2. System-wide Information Management (SWIM) data
- 3. National Transportation Safety Board (NTSB) accident analysis reports

Four-step Framework

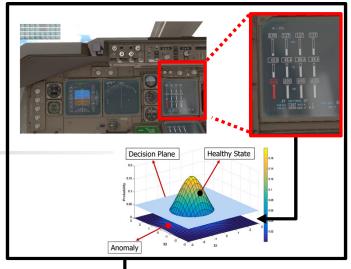

- 1. Risk-based event outcome categorization
- 2. Hybrid model construction
- 3. Probabilistic fusion rule development
- 4. Map the risk-level prediction to event-level outcomes

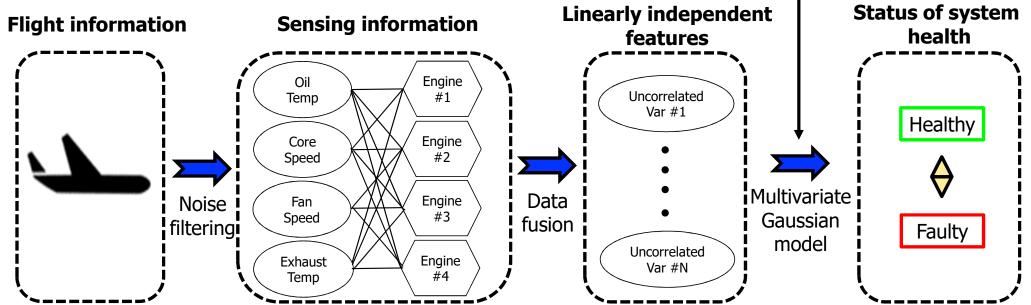
$$p(Y_a = i) = \sum_{j=1}^{5} p(\mathbf{Y} = \mathbf{i} | \widehat{\mathbf{Y}} = \mathbf{j}) p(\widehat{Y}_a = j) * \frac{p(j)}{\widetilde{p}(j)}$$

Prediction Accuracy

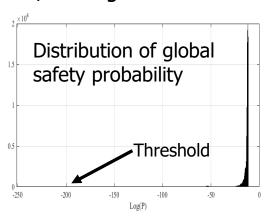

Precision: 81% Recall: 81% F1 Score: 81%

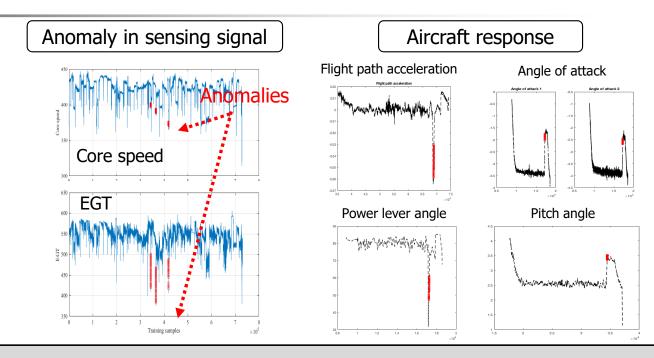
Zhang & Mahadevan, AIAA Aviation 2018


Monitoring and sensing – big picture of airside monitoring

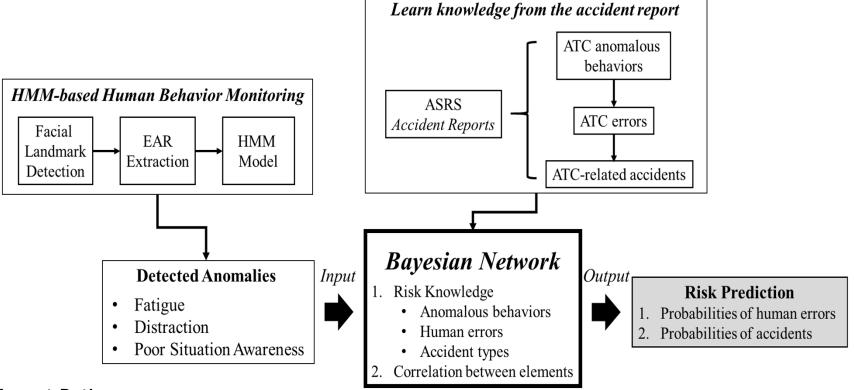

- Dimensional reduction Autoencoder
- Feature extraction for handling critical system parameters
- Anomaly detection in real airline dataset & simulated flight dataset

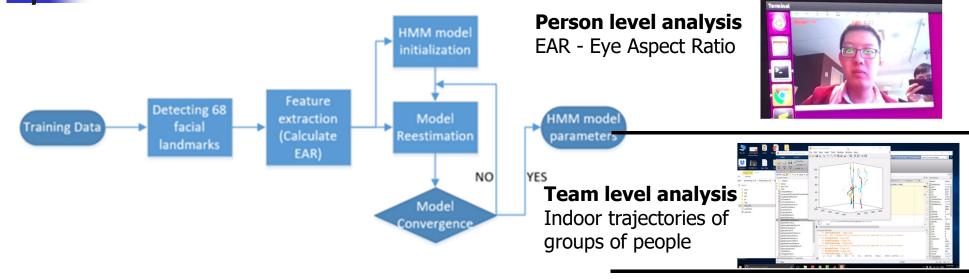
Monitoring and sensing - anomaly detection


 Current model tested with a reduced dataset in cruise phase for online monitoring using simulated fault cases



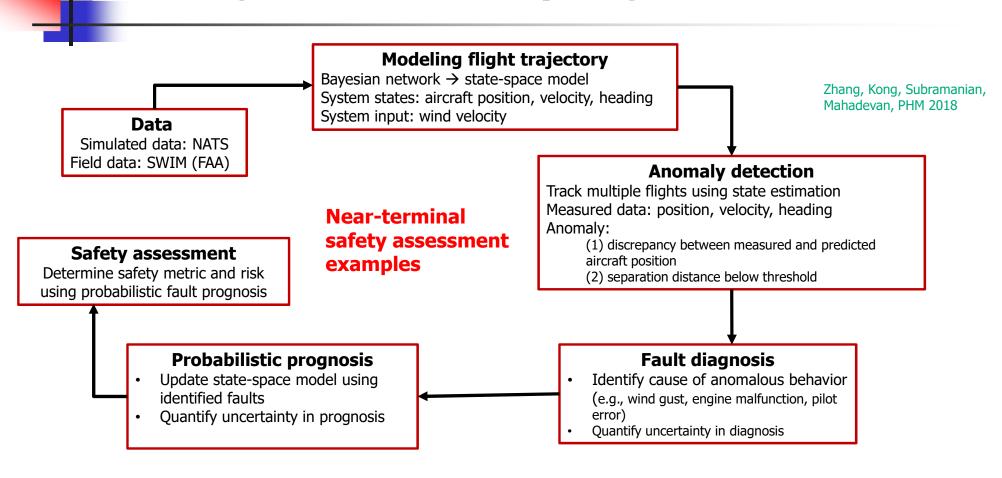
Monitoring and sensing – indication of pilot behavior


- 458 flight data investigated
- Distribution of global safety probability constructed in logscale (threshold set to be -200)
- Anomalies in aircraft detected in 3/458 flights


- Identical aircraft dynamics in three detected anomaly cases
- Drop in path longitudinal acceleration; increases in angle of attack & patch angle
- Pilot reduces power lever angle

Monitoring and sensing – human behavior monitoring

*EAR - Eye Aspect Ratio


Monitoring and sensing – computer vision technique

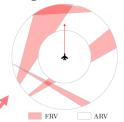
Outdoor Site level analysisGroups of people across job
site for collaboration analysis

Uncertainty management – uncertainty in diagnostics and prognostics

Uncertainty management – an illustration example

ATL Air Traffic in BlueSky

In-conflict aircraft (orange) undergo conflict detection and resolution (CD&R) based their statespace diagrams to avoid LoS.


SWIM Flight Plans to BlueSky Scenario

_			_
0:02:09.04>CRE	DAL2396	B752	33.019
0:02:09.04>DAL2396	ORIG	KRSW	
0:02:09.04>DAL2396	DEST	KATL	RW27L
0:02:09.03>CRE	DAL369	A320	33.207
0:02:09.03>DAL369	ORIG	KATL	RW27R
0:02:09.03>DAL369	DEST	MNMG	1 [
0:02:16.14>ENY3758	HDG	177.965	
0:02:16.14>ENY3758	ALT	32000.0	
0:02:16.14>ENY3758	SPD	395.0	

- Create aircraft by ID, type, position, and speed
- Assign origin, destination and runway (for ATL)
- Per SWIM modify HDG, ALT, SPD

State-Space Diagrams (SSDs)

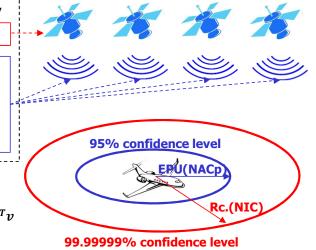
The state-space diagram is the intersection of forbidden and reachable velocities and defines the set of *Forbidden* and *Allowable* Reachable Velocities (FRVs and ARVs) [1]

Flight Plan Flexibility (FPF)

$$FPF = 1 - \frac{Area(FRV)}{Area(FRV) + Area(ARV)}$$

- An **FPF close to 0** indicates that most velocities among the aircraft's reachable velocities that will result in a LoS.
- An FPF of 1 means that the aircraft may assume any reachable velocity and not incur any LoS.
- An FPF of 0 means that a LoS is inevitable if no CD&R action is taken by any other aircraft in the system.
- S. Balasooriyan, "Multi-aircraft Conflict Resolution using Velocity Obstacles," Delft University of Technology, 2017.

Uncertainty management – uncertainty quantification of single ADS-B


- Reasons for positional uncertainty
 - Navigation satellite and onboard receiver derive the aircraft's position
 - Normal and abnormal (fault) error induce the positional uncertainty

Reasons for uncertainty

- Satellite fault
- Satellite ephemeris and clock error
- Ionospheric delay
- Tropospheric delay
- Multi-path error
- Receiver noise

Position estimation:

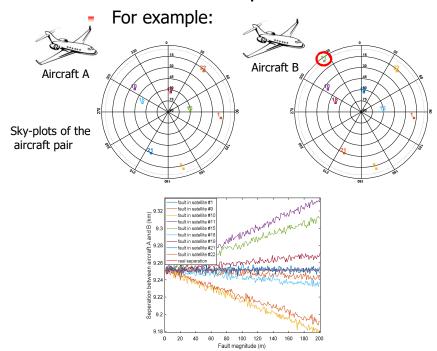
$$\widehat{x} = (H^T H)^{-1} H^T z = x + (H^T H)^{-1} H^T v$$
where $H = \begin{pmatrix} h_1 \\ h_2 \\ ... \\ h_n \end{pmatrix}, v \sim N(0, \sigma)$

 Two levels of positional uncertainty broadcasted in ADS-B data

Level 1: Accuracy

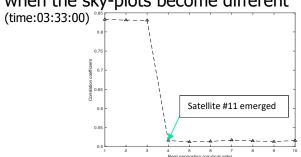
- □ Position error at 95% confidence level only considering normal error
- In ADS-B data, this term is represented by **NACp** (Navigation Accuracy Category for position) from 0 to 11.
- ☐ The **EPU** (Estimated Position Uncertainty) is position error range denoted by NACp

Level 2: Integrity

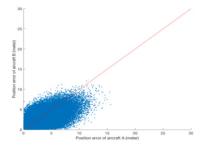

- □ Position error at 99.9999% confidence level considering navigation service failure cases
- ☐ In ADS-B, this term is represented by **NIC** (Navigation Integrity Category) from 0 to 11

30

☐ The Rc. (containment radius) is position error range denoted by NIC.


Uncertainty management – uncertainty quantification of a pair of aircraft

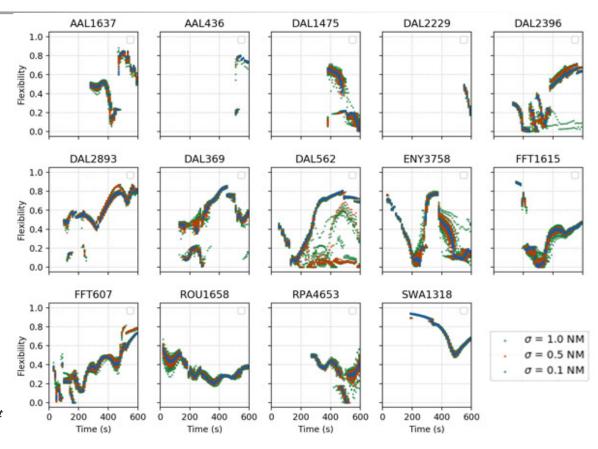
 The two aircrafts may view different satellite-set at a specific time



Position error correlation

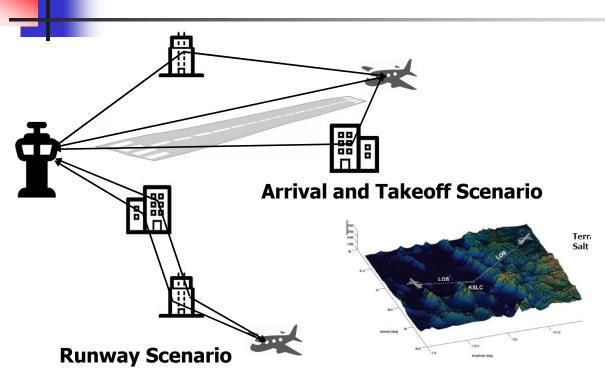
 The aircraft pair position error correlation is sharply reduced at real separation of 4nm when the sky-plots become different

Monte Carlo simulation (real separation: 5nm)

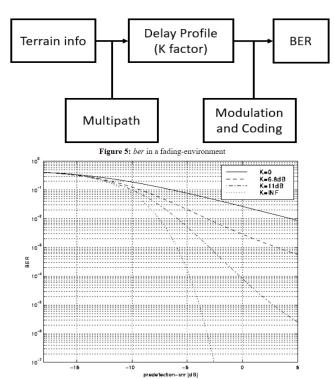


Uncertainty management – uncertainty propagation with simulation

Propagating ADS-B Uncertainty through BlueSky Simulations:

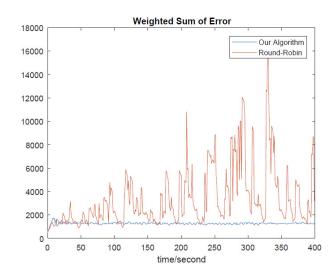

- BlueSky was connected with NESSUS® to propagate uncertainty with FPF as QoI
- 1000-point LHS was based on probability distributions of ADS-B signals for three Navigational Accuracy Categories for position (NACp) [2]

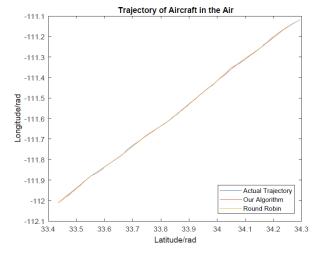
NACp Values and Corresponding Position Standard Deviation						
NACp Value	Standard Deviation (NM)	Standard Deviation (degrees)				
4	1.0	0.0016				
5	0.5	0.008				
7	0.1	0.016				

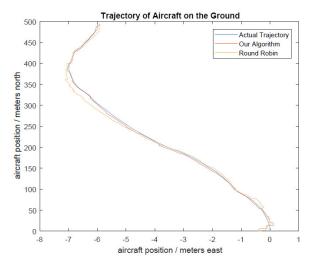


^[2] Federal Aviation Administration (FAA) (2010) *Airworthiness Approval of Automatic Dependent Surveillance - Broadcast (ADS-B) Out Systems.* AC 20-165.

Uncertainty management – uncertainty from communications

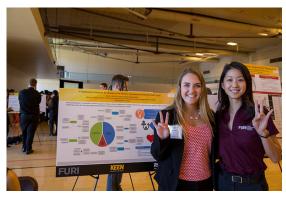

Terrestrial objects such as mountains and buildings can cause multipath interference, different scenarios require different channel models.

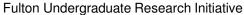


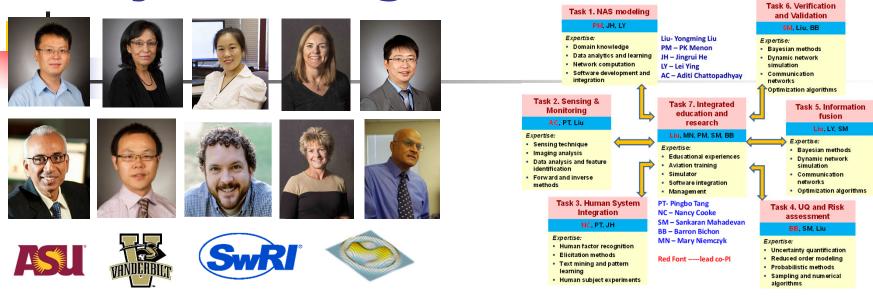

The relationship between SNR and BER under different K factor

Uncertainty management – uncertainty reduction via channel optimization

- Optimal scheduling of data transmissions to minimize the overall tracking error
- Significant reduction of uncertainty in the round-robin communication pattern
- Large impact of communication with terrain information for safety evaluation on the ground and near the airport

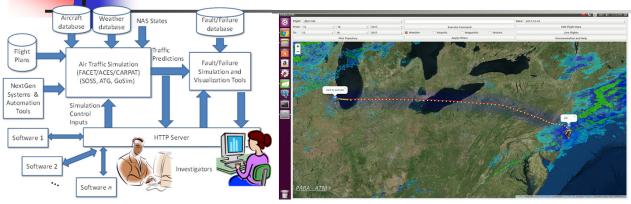


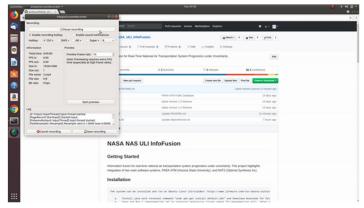

Educational activities and achievements



Air Traffic Management Program

- 30+ students (PhD + MS + undergraduate students) from 7 majors (air traffic management, aerospace engineering, psychology, mechanical engineering, computer science, electrical engineering, and civil engineering)
- First MS graduate hired in ATM field
- First undergraduate design competition submitted for Airport Cooperative Research Program SMART LINE UP AND WAIT SYSTEM FOR AIRPORT
- Fulton Undergraduate Research Initiative proposal A \$99 VORATS system (VOice Recognition for Air Traffic Simulators)
- Intergradation with ASU ATM program and PHX controller training program


Project management - team


Team integration flow chart

- Diverse, multidisciplinary team that includes faculty in ASU's Ira A. Fulton Schools of Engineering and collaborators from Vanderbilt University, Southwest Research Institute and Optimal Synthesis Inc.
- Big data analysts, applied statisticians, image processors, psychologists, computer scientists, and aerospace engineers
- Expertise from information theory, applied statistics, data mining and analytics, risk management, airspace software systems, monitoring and imaging, and network science
- Smooth transition from academia basic research to applications of aerospace industry

Research dissemination and community impact

NATS PARA - ATM

Open source github sharing

- Development of simulation tools (NATS) to be used for future NextGen research
- Wide dissemination of research outcomes to aviation community
 - Prognostics Analysis and Reliability Assessment (PARA) - ATM
- Organize special sessions in conference to enhance the program impact
- External Advisory Board (EAB) that consists of various experts from industry, government agencies, and academia

External Advisory Board

Jeffrey Panhans, Allegiant Air

Chid Apte, **IBM**

Eric Haugse, **Boeing**

Chuck Farrar, LANL

Eric Ji, Intel

Stephanie Cope, Intel

Lou Gullo, Raytheon

Heinz Erzberger, UC Santa Cruz

Habib Fathi. Pointivo

Lyle Hogg, **Piedmont Airlines**

Roger Mandeville, ATAC

Banavar Sridhar, **USRA**

Xinzhou Wu, Qualcomm

Verne Latham

Rob Hunt, FAA

External Advisory Board (EAB) – members from various different disciplines and industries

EAB roles: 1) provide feedback and comments on the proposed research and research progress; 2) participate (in person or via telecom) in annual project meeting; 3) participate in regular progress teleconferences; 4) provide feedback and suggestions on future research directions to address important gaps in the community.

- Fusing knowledge among multiple domains within the airspace system.
- Creating a multidisciplinary team of big data analysts, applied statistician, image processors, psychologists, computer scientists, and engineers.
- Improving air travel safety through complex human-cyber-physical system simulations using ultra-fast algorithms for real-time analysis.
- Developing extreme-scale, in-air and on-ground data sources to increase system reliability and risk management.
- Integrating multi-level education with K12 Education Outreach Program, Fulton
 Undergraduate Research Initiative, graduate student advising, and pilot training.
- Close collaboration with aviation industry enables future technology transfer.

Thanks! Questions?

Acknowledgments

The research reported in this presentation was supported by funds from NASA University Leadership Initiative program (Contract No. NNX17AJ86A, Project Officer: Dr. Kai Goebel, Program coordinator: Koushik Datta, Principal Investigator: Dr. Yongming Liu). The support is gratefully acknowledged.